z-logo
Premium
8.2% pure selenide kesterite thin‐film solar cells from large‐area electrodeposited precursors
Author(s) -
Vauche Laura,
Risch Lisa,
Sánchez Yudania,
Dimitrievska Mirjana,
Pasquinelli Marcel,
Goislard de Monsabert Thomas,
Grand PierrePhilippe,
JaimeFerrer Salvador,
Saucedo Edgardo
Publication year - 2016
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.2643
Subject(s) - kesterite , czts , solar cell , materials science , sputtering , selenide , thin film , fabrication , energy conversion efficiency , layer (electronics) , copper indium gallium selenide solar cells , solar cell efficiency , vacuum evaporation , stack (abstract data type) , etching (microfabrication) , evaporation , thin film solar cell , optoelectronics , nanotechnology , chemical engineering , metallurgy , computer science , physics , selenium , thermodynamics , medicine , alternative medicine , pathology , engineering , programming language
Cu 2 ZnSnSe 4 solar cell absorbers are synthesized by large‐area electrodeposition of metal stack precursors followed by selenization. A champion solar cell exhibits 8.2% power conversion efficiency, a new record for Cu 2 ZnSnSe 4 solar cells prepared from electrodeposited metallic precursors. Significant improvements of device performance are achieved by the application of two etching procedures and buffer layer optimization. These results validate electrodeposition as a credible alternative to vacuum processes (sputtering, co‐evaporation) for earth‐abundant thin‐film solar cell fabrication at low cost. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom