Premium
Electrically conductive anti‐reflecting nanostructure for chalcogenide thin‐film solar cells
Author(s) -
Park JiHyeon,
Lee Tae Il,
Hwang SungHwan,
Moon KyeongJu,
Myoung JaeMin
Publication year - 2015
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.2488
Subject(s) - chalcogenide , nanostructure , materials science , electrical conductor , optoelectronics , thin film , nanotechnology , engineering physics , composite material , engineering
Electrically conducting aluminum (Al)‐doped ZnO nanorods (NRs) film has been introduced as an anti‐reflective (AR) layer for effective light trapping in chalcogenide thin‐film solar cells. Results indicate that the Al‐doping significantly reduced the electrical contact resistance between the Ag top electrode and the AR layer. The Al‐doped ZnO NRs exhibited low average reflectance (4.5%) over the entire visible and near‐infrared range, and changed the nature of electrical contact between the Ag electrode and the AR layer from Schottky to Ohmic. Finally, the CuInS 2 solar cell coated with the Al‐doped ZnO NRs exhibited huge enhancement in photovoltaic efficiency from 9.57% to 11.70% due to the lowering series resistance and the increase in the short‐circuit current density, when compared with that of a solar cell without the AR layer. Copyright © 2014 John Wiley & Sons, Ltd.