Premium
Dust effects on PV array performance: in‐field observations with non‐uniform patterns
Author(s) -
Lorenzo E.,
Moretón R.,
Luque I.
Publication year - 2014
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.2348
Subject(s) - photovoltaic system , voltage , short circuit , homogeneous , string (physics) , power (physics) , transmittance , environmental science , current (fluid) , electrical engineering , materials science , physics , optoelectronics , engineering , theoretical physics , thermodynamics
ABSTRACT This paper presents the impact of non‐homogeneous deposits of dust on the performance of a PV array. The observations have been made in a 2‐MW PV park in the southeast region of Spain. The results are that inhomogeneous dust leads to more significant consequences than the mere short‐circuit current reduction resulting from transmittance losses. In particular, when the affected PV modules are part of a string together with other cleaned (or less dusty) ones, operation voltage losses arise. These voltage losses can be several times larger than the short‐circuit ones, leading to power losses that can be much larger than what measurements suggest when the PV modules are considered separately. Significant hot‐spot phenomena can also arise leading to cells exhibiting temperature differences of more than 20 degrees and thus representing a threat to the PV modules' lifetime. Copyright © 2013 John Wiley & Sons, Ltd.