z-logo
Premium
New reaction kinetics for a high‐rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se 2 ‐based solar cells
Author(s) -
Hariskos Dimitrios,
Menner Richard,
Jackson Philip,
Paetel Stefan,
Witte Wolfram,
Wischmann Wiltraud,
Powalla Michael,
Bürkert Linda,
Kolb Torsten,
Oertel Mike,
Dimmler Bernhard,
Fuchs Bettina
Publication year - 2012
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.1244
Subject(s) - copper indium gallium selenide solar cells , chemical bath deposition , layer (electronics) , kinetics , buffer (optical fiber) , zinc , deposition (geology) , sulfide , zinc sulfide , chemistry , materials science , chemical engineering , analytical chemistry (journal) , inorganic chemistry , thin film , nanotechnology , metallurgy , chromatography , quantum mechanics , sediment , computer science , engineering , paleontology , telecommunications , physics , biology
We report on a new chemical bath deposition kinetics for the zinc sulfide oxide Zn(S,O) buffer layer as used in Cu(In,Ga)Se 2 (CIGS)‐based solar cells. The new approach allows at high rates a better control of the growth kinetics, the step coverage on the rough CIGS surface, and the [S]/([S]+[O]) ratio in the film. Layer thicknesses as needed for buffer layer applications can be grown at moderate temperatures of 60–80 °C within 5–8 min. Applying this high‐rate Zn(S,O) buffer in CIGS/Zn(S,O)/(Zn,Mg)O/ZnO:Al devices, we realized highly efficient small area solar cells, 30 × 30 cm 2 submodules, and 60 × 120 cm 2 full‐size modules. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom