z-logo
Premium
New reaction kinetics for a high‐rate chemical bath deposition of the Zn(S,O) buffer layer for Cu(In,Ga)Se 2 ‐based solar cells
Author(s) -
Hariskos Dimitrios,
Menner Richard,
Jackson Philip,
Paetel Stefan,
Witte Wolfram,
Wischmann Wiltraud,
Powalla Michael,
Bürkert Linda,
Kolb Torsten,
Oertel Mike,
Dimmler Bernhard,
Fuchs Bettina
Publication year - 2012
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.1244
Subject(s) - copper indium gallium selenide solar cells , chemical bath deposition , layer (electronics) , kinetics , buffer (optical fiber) , zinc , deposition (geology) , sulfide , zinc sulfide , chemistry , materials science , chemical engineering , analytical chemistry (journal) , inorganic chemistry , thin film , nanotechnology , metallurgy , chromatography , quantum mechanics , sediment , computer science , engineering , paleontology , telecommunications , physics , biology
ABSTRACT We report on a new chemical bath deposition kinetics for the zinc sulfide oxide Zn(S,O) buffer layer as used in Cu(In,Ga)Se 2 (CIGS)‐based solar cells. The new approach allows at high rates a better control of the growth kinetics, the step coverage on the rough CIGS surface, and the [S]/([S]+[O]) ratio in the film. Layer thicknesses as needed for buffer layer applications can be grown at moderate temperatures of 60–80 °C within 5–8 min. Applying this high‐rate Zn(S,O) buffer in CIGS/Zn(S,O)/(Zn,Mg)O/ZnO:Al devices, we realized highly efficient small area solar cells, 30 × 30 cm 2 submodules, and 60 × 120 cm 2 full‐size modules. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here