z-logo
Premium
Façade–integrated photovoltaics: a life cycle and performance assessment case study
Author(s) -
Perez Marc J. R.,
Fthenakis Vasilis,
Kim HyungChul,
Pereira Anthony O.
Publication year - 2012
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.1167
Subject(s) - building integrated photovoltaics , photovoltaic system , embodied energy , facade , photovoltaics , environmental science , life cycle assessment , process engineering , automotive engineering , engineering , architectural engineering , materials science , electrical engineering , civil engineering , production (economics) , physics , macroeconomics , economics , thermodynamics
The Solaire Building has the first façade building‐integrated photovoltaic (BIPV) array in New York City. This paper presents the life cycle impacts of the Solaire BIPV and extrapolates its performance to other façade systems. Engineering diagrams, detailed material inventories and 5 years of irradiation and actual performance data in 15‐min intervals offer insights into current BIPV construction and performance. The Solaire BIPV employs waste‐stream monocrystalline silicon wafers. Correspondingly, zero energy input was allocated to this BIPV from wafer production, resulting to a very low energy payback time (EPBT) and global warming potential burden (0.8 years and −10.2 g CO 2 /kWh, respectively). A negative EPBT results from subtracting the impact of the thermally and structurally equivalent concrete and brick wall that the BIPV array replaced. Data from current photovoltaic‐dedicated Si wafer supply were also used; these resulted with an EPBT of 3.8 years and a global warming potential of 61 g CO 2 /kWh. The performance ratio and EPBT of the Solaire system were compared with those in the International Energy Agency Photovoltaic Power Systems Task 2 inventory database. The drawback of façade BIPV is its vertical orientation, receiving lower incident irradiation than rooftop and ground installations. Nevertheless, BIPV offers two main advantages over such installations: it does not require any ‘virgin’ land for its operation, and it replaces structural units, thus avoiding the cost, embodied energy and corresponding emissions related to those. We detail herein how the replacement of traditional cladding materials can offset the performance drawback of BIPV, in terms of environmental burden and EPBT. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here