z-logo
Premium
Light‐enhanced surface passivation of TiO 2 ‐coated silicon
Author(s) -
Thomson Andrew F.,
McIntosh Keith R.
Publication year - 2012
Publication title -
progress in photovoltaics: research and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.286
H-Index - 131
eISSN - 1099-159X
pISSN - 1062-7995
DOI - 10.1002/pip.1132
Subject(s) - passivation , materials science , silicon , boron , titanium , silicon dioxide , carrier lifetime , titanium dioxide , optoelectronics , saturation current , solar cell , open circuit voltage , nanotechnology , layer (electronics) , chemistry , composite material , voltage , metallurgy , physics , organic chemistry , quantum mechanics
Titanium dioxide is shown to afford good passivation to non‐diffused silicon surfaces and boron‐diffused surfaces after a low‐temperature anneal. The passivation most likely owes to the significant levels of negative charge instilled in the films, and passivation is enhanced by illumination—advantageous for solar cells—indicating that a titanium dioxide photoreaction is at least partly responsible for the low surface recombination. We demonstrate a surface recombination velocity of less than 30 cm/s, on a 5‐Ω cm n‐type silicon, and an emitter saturation current density of 90 fA/cm 2 on a 200‐Ω/sq boron diffusion. If these titanium dioxide passivated boron‐diffused surfaces were employed in a crystalline silicon solar cell, an open‐circuit voltage as high as 685 mV could be achieved. Given that TiO 2 has a high refractive index and was deposited with atmospheric pressure chemical vapour deposition, an inexpensive technique, it has the potential as a passivating antireflection coating for industrial boron‐diffused silicon solar cells. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom