Premium
Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites
Author(s) -
Das N C,
Chaki T K,
Khastgir D
Publication year - 2002
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.811
Subject(s) - carbon black , composite material , electrical resistivity and conductivity , materials science , natural rubber , electrical conductor , composite number , carbon fibers , electrical engineering , engineering
The variation of electrical resistivity of carbon black and short carbon fibre (SCF) filled rubber composites was studied against the degree of strain at constant strain rate. It was found that both the degree of strain and strain rate affect the electrical resistivity of the composites. The change in resistivity against the strain and strain rate depends both on the concentration and the type of conductive filler. The incorporation of short carbon fibres (SCF) imparts higher conductivity to the composite than carbon black at the same level of loading. Composites filled with carbon black exhibit better mechanical properties than SCF filled composites. Electrical setting, ie a permanent change in electrical resistivity, was observed during extension–retraction cycles. A good correlation was found between the mechanical response and the electrical response towards strain sensitivity. The results of different experiments are discussed in the light of breakdown and formation of conductive networks in the filled rubber composites. © 2002 Society of Chemical Industry