Premium
Pyroelectric and dielectric properties of spin‐coated thin films of vinylidene fluoride–trifluoroethylene copolymers
Author(s) -
Akcan M I,
Topacli C
Publication year - 2001
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.705
Subject(s) - pyroelectricity , materials science , poling , crystallinity , copolymer , dielectric , spin coating , composite material , dielectric loss , polymer , coating , ferroelectricity , optoelectronics
This work emphasizes the use of vinylidene fluoride and trifluoroethylene copolymer P(VDF‐TrFE) as a pyroelectric sensor. The pyroelectric and dielectric properties of the copolymer have been investigated in the temperature interval 150–350 K. The samples were prepared by using a spin‐coating technique with 70/30 mol% VDF/TrFE copolymer. The final film thickness of the samples, which is mainly determined by the concentration of the copolymer, spinning rate and spin time, was measured with a surface profiler. The samples were annealed at 150 °C for 10 min to improve the crystallinity of the copolymer. The crystallinity of the annealed and non‐annealed samples was compared by IR spectroscopy. The most effective process by which to improve the pyroelectric response of the material is to pole the sample with huge poling field‐strengths at elevated temperatures. Both pyroelectric and dielectric activities of the samples were measured after each successful poling process. It was observed that while the pyroelectric activity of the material increases, the dielectric activity decreases, so the figure‐of‐merit of the material, which shows the sensor capability of the material, was increased by a significant amount. It was found that the pyroelectric coefficient of VDF/TrFE (70/30 mol%) copolymer is 68.7 µC m −2 K −1 at 300 K. © 2001 Society of Chemical Industry