z-logo
Premium
Tertiary‐amine‐free, non‐planar, sulfone‐containing, tetrafunctional epoxy and its application as a high temperature matrix
Author(s) -
Zhang Miaomiao,
Miao Xuepei,
Fu Jianwei,
Bao Fei,
An Xing,
He Lifan,
Li Xiaoyu,
Meng Yan
Publication year - 2020
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.6028
Subject(s) - epoxy , diglycidyl ether , materials science , toughness , amine gas treating , tertiary amine , sulfone , bisphenol a , polymer chemistry , composite material , chemistry , organic chemistry
Non‐amine‐derived tetrafunctional epoxies have several advantages over the amine‐derived N , N , N ′, N ′‐tetraglycidyl‐4,4′‐diaminodiphenyl methane (TGDDM) in high temperature applications. Although two non‐amine‐derived tetrafunctional epoxies were developed in our laboratory, further improvements in toughness using less loading amount is still desirable. Thus, a tertiary‐amine‐free, non‐planar and triphenylmethane‐containing tetrafunctional epoxy (STFE) with a sulfone spacer was synthesized. When it was mixed with diglycidyl ether of bisphenol A (DGEBA) and cured with 4,4′‐diaminodiphenylsulfone (DDS), both thermal and mechanical performances outperformed TGDDM. Moreover, STFE modified system shows the highest toughness (35.7 kJ m –2 ) among three amine‐free and triphenylmethane‐containing epoxies at merely 5 wt% loading. Molecular simulation and thermomechanical analysis results suggest that the improved mechanical properties could be related to the geometry of the molecule and larger free volume. Despite a marginal drop in T g , the thermal degradation temperature is better than that of TGDDM/DDS. In addition, the moisture resistance of STFE/DGEBA/DDS is much better than that of TGDDM/DDS. Thus, STFE modified DGEBA could be a potential replacement for TGDDM in some high temperature applications. © 2020 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom