z-logo
Premium
Synthesis and properties of a novel bio‐based benzoxazine resin with excellent low‐temperature curing ability
Author(s) -
Zhan Zuomin,
Yan Hongqiang,
Yin Ping,
Cheng Jie,
Fang Zhengping
Publication year - 2020
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5957
Subject(s) - curing (chemistry) , thermal stability , monomer , aniline , bisphenol a , fourier transform infrared spectroscopy , materials science , polymer chemistry , char , nuclear chemistry , chemical engineering , chemistry , organic chemistry , composite material , polymer , epoxy , pyrolysis , engineering
A novel bio‐based benzoxazine resin (diphenolic acid/furfurylamine benzoxazine resin, PDPA‐F‐Boz) was prepared by using bio‐based diphenolic acid, furfurylamine and paraformaldehyde as raw materials. The structure of DPA‐F‐Boz monomer was characterized by Fourier transform infrared spectroscopy, 1 H NMR and 13 C NMR, and then its curing reaction and the thermal stability of the cured PDPA‐F‐Boz were analyzed. Compared with the traditional fossil‐based benzoxazine (bisphenol A/aniline benzoxazine, BPA‐A‐Boz) and the bio‐based benzoxazine (diphenolic acid/aniline benzoxazine, DPA‐A‐Boz), DPA‐F‐Boz monomer showed the lowest curing temperature, and PDPA‐F‐Boz had the highest residual char ratio at 800 °C and the lowest degradation rate at the peak temperature. Meanwhile, the total heat release, peak heat release rate and heat release capacity of PDPA‐F‐Boz were much lower than those of PBPA‐A‐Boz and PDPA‐A‐Boz. Thus, PDPA‐F‐Boz showed excellent low‐temperature curing ability and thermal stability. © 2019 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here