z-logo
Premium
The study of palm‐oil‐based bio‐polyol on the morphological, acoustic and mechanical properties of flexible polyurethane foams
Author(s) -
Zhang Dan,
Chen Shuming
Publication year - 2020
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5941
Subject(s) - polyurethane , materials science , composite material , polyol , ultimate tensile strength , compressive strength , microstructure , noise reduction coefficient , porosity
The focus of this paper was to explore the acoustic properties of flexible polyurethane (FPU) foam modified by palm‐oil‐based polyol (POP). The presence of POP showed a marked influence on the microstructure and mechanical properties of FPU foam. A smaller mean pore diameter can be observed at lower POP content. Indeed, the introduction of POP caused a higher closed pore ratio and an increased air‐flow resistivity, which consequently improved the sound absorption coefficient and transmission loss. In particular, the acoustic performance of the all bio‐based FPU foam was enhanced at low frequency, and the density was lower than that of the reference foam. Additionally, the addition of POP also improved the compressive strength. Conversely, the tensile strength of FPU foam declined with increasing POP content. From this study, the outstanding acoustic ability of bio‐based FPU foam has been proved, with additional advantages of lower density and higher compressive strength. © 2019 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here