Premium
Biobased epoxy resin derived from eugenol with excellent integrated performance and high renewable carbon content
Author(s) -
Miao JiaTao,
Yuan Li,
Guan Qingbao,
Liang Guozheng,
Gu Aijuan
Publication year - 2018
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5621
Subject(s) - epoxy , materials science , diglycidyl ether , limiting oxygen index , eugenol , composite material , flexural strength , monomer , bisphenol a , glass transition , chemical engineering , polymer , pyrolysis , organic chemistry , chemistry , char , engineering
Developing biobased epoxy resin with high renewable carbon content and outstanding integrated performance is beneficial for both sustainable development and applications in cutting‐edge fields. Herein, a biobased epoxy monomer (TEUP‐EP) with high renewable carbon content (100%) was synthesized from renewable eugenol with a sustainable process; TEUP‐EP was then blended with 4,4′‐diaminodiphenylmethane (DDM) to develop a new biobased epoxy resin (TEUP‐EP/DDM). The integrated performance of TEUP‐EP/DDM resin was studied and compared with that of petroleum‐based diglycidyl ether of bisphenol A (DGEBA)/DDM resin. Compared with DGEBA/DDM resin, TEUP‐EP/DDM resin has much better integrated performance and not only exhibits a glass transition temperature about 26 °C higher and a 24.4% or 57% increased flexural strength or modulus, but also shows outstanding flame retardancy. Specifically, the limiting oxygen index increases from 26.5% to 31.4% and the UL‐94 grade improves from no rating to the V‐0 level; moreover, the peak heat release rate and total heat release decreased by 63.1% and 57.4%, respectively. All these results fully prove that TEUP‐EP/DDM is a novel biobased high performance epoxy resin. The mechanism behind these attractive integrated performances is discussed intensively. © 2018 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom