z-logo
Premium
Impact of blend ratio on the properties of graphene oxide‐filled carboxylated acrylonitrile–butadiene rubber/styrene–butadiene rubber blends
Author(s) -
Zhang Xumin,
Yin Qing,
Xue Xiaodong,
Jia Hongbing,
Xu Zhaodong
Publication year - 2018
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5527
Subject(s) - natural rubber , materials science , styrene butadiene , tear resistance , acrylonitrile , nanocomposite , composite material , elastomer , thermal stability , ultimate tensile strength , nitrile rubber , oxide , chemical engineering , polymer , styrene , copolymer , engineering , metallurgy
Carboxylated acrylonitrile–butadiene rubber (XNBR) and styrene–butadiene rubber (SBR) composites with 3 phr (parts per hundred rubber) graphene oxide (GO) were prepared using a latex mixing method. Effects of XNBR/SBR blend ratios on the mechanical properties, thermal conductivity, solvent resistance and thermal stability of the XNBR/SBR/GO nanocomposites were studied. The tensile strength, tear strength, thermal conductivity and solvent resistance of the XNBR/SBR/GO (75/25/3) nanocomposite were significantly increased by 86, 96, 12 and 21%, respectively, compared to those of the XNBR/SBR (75/25) blend. The thermal stability of the nanocomposite was significantly enhanced; in other words, the temperature for 5% weight loss and the temperature of the maximal rate of degradation process were increased by 26.01 and 14.97 °C, respectively. Theoretical analysis and dynamic mechanical analysis showed that the GO tended to locate in the XNBR phase, which led to better properties of the XNBR/SBR/GO (75/25/3) nanocomposite. © 2017 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom