z-logo
Premium
Removal of organic water pollutant using magnetite nanomaterials embedded with ionic copolymers of 2‐acrylamido‐2‐methylpropane sodium sulfonate cryogels
Author(s) -
AlHussain Sami A,
Ezzat Abdelrhman O,
Gaffer Amany K,
Atta Ayman M
Publication year - 2018
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5492
Subject(s) - adsorption , chemical engineering , magnetite , materials science , sulfonate , copolymer , polymerization , polymer , chemistry , composite material , sodium , organic chemistry , engineering , metallurgy
Magnetite cryogel composites as macroporous crosslinked matrices have received wide attention and attract much interest in the water purification and desalination industry. They can be used to produce effective adsorbents with high adsorption rate, capacity and desorption for water pollutants. In this work, the incorporation of magnetite nanoparticles into cryogels by the in situ method is proposed to increase the dispersion of nanoparticles in the gel composites and to produce effective magnetic materials with high adsorption capacities. Ionic sodium‐2‐acrylamido‐2‐methylpropane sulfonate (Na‐AMPS) monomer was selected to prepare cryogels as the homopolymer or copolymers with 2‐hydroxyethyl methacrylate (HEMA) or N ‐vinyl pyrrolidone (VP) by the crosslinking polymerization technique in the frozen state. Magnetite nanoparticles were introduced into the cryogel by the in situ co‐precipitation method after introducing iron cations into the cryogel networks. The surface morphologies, crystal structure, magnetite content, thermal stability and magnetic properties were determined for the cryogels and their magnetite composites. The magnetite cryogel composites show significantly enhanced methylene blue dye removal in short times with higher adsorption efficiencies and good regeneration to form an effective adsorbent for water treatment. © 2017 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here