z-logo
Premium
Vinyl‐type homo‐ and copolymerization of norbornene catalyzed by bis(phenoxyimine) titanium complex
Author(s) -
Meng Jiafeng,
Li Xin,
Ni Xufeng,
Shen Zhiquan
Publication year - 2017
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5421
Subject(s) - norbornene , copolymer , polymer chemistry , materials science , dispersity , polymerization , monomer , glass transition , polymer , molar mass distribution , composite material
A ternary catalytic system consisting of a bis(phenoxyimine) titanium complex, triisobutylaluminium and an organoboron compound exhibited high activity in the vinyl‐type homopolymerization of norbornene. The obtained polynorbornene showed a modest molecular weight ( M n ≈ 5 × 10 4 g mol −1 ) and broad molecular weight distribution (polydispersity index ≈ 3.5). A copolymer of norbornene with 1,3‐butadiene was prepared using a binary catalytic system consisting of bis(phenoxyimine) titanium complex and triisobutylaluminium. The norbornene units in the copolymer adopted a vinyl‐type addition structure confirmed using distortionless enhancement by polarization transfer 135 13 C NMR microstructure analyses. Polymerization kinetics studies showed that neither monomer feed ratio nor conversion had an effect on the composition of the copolymer backbone which was composed of 55% norbornene units and 45% 1,3‐butadiene units. The essentially constant polymer composition implied an alternating nature of chain propagation. The copolymer exhibited good thermal stability and moderate glass transition temperature (50.9–68.2 °C) with a relatively high molecular weight ( M w = 0.18 × 10–1.31 × 10 5 g mol −1 ), and excellent transparency (maximal transmittance >80%). © 2017 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom