Premium
Fabrication of high‐ k poly(vinylidene fluoride)/Nylon 6/carbon nanotube nanocomposites through selective localization of carbon nanotubes in blends
Author(s) -
Mao Hanjun,
Zhang Tingting,
Huang Ting,
Zhang Nan,
Wang Yong,
Yang Jinghui
Publication year - 2017
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5302
Subject(s) - materials science , carbon nanotube , nanocomposite , composite material , dielectric , polyamide , nylon 6 , morphology (biology) , polymer blend , fabrication , dielectric loss , polymer , copolymer , medicine , alternative medicine , optoelectronics , pathology , biology , genetics
The morphology as well as the distribution of conductive fillers in conductive filler/polymer nanocomposites have a decisive effect on the dielectric properties of blend composites. In this study, the relationship between morphology and properties was carefully investigated and the underlying mechanism is discussed based on the microcapacitor model. Multiwalled carbon nanotubes (CNTs) were introduced into an immiscible poly(vinylidene fluoride) (PVDF)/polyamide 6 (Nylon 6) blend and the morphologies of PVDF/Nylon 6 were tailored by changing the weight ratio of PVDF to Nylon 6, varying from sea‐island morphology to co‐continuous morphology. Interestingly, the CNTs are selectively localized in the Nylon 6 phase in both sea‐island and co‐continuous morphological blends, which is due to the finer interaction between Nylon 6 and CNTs. In the sea‐island morphological blend only, a strong increase of the dielectric permittivity can be found when the content of CNTs is increased. It is surprising that no effects of CNTs on the dielectric properties can be found in the co‐continuous morphological blend. The CNT filled Nylon 6 domains in the sea‐island morphological blend act as a microcapacitor with improved charge accumulation and interfacial polarization, resulting in a marked increase in dielectric permittivity. © 2016 Society of Chemical Industry