z-logo
Premium
Synthesis and characterization of siloxane‐based cyanate ester elastomers from readily available materials: a top‐down approach
Author(s) -
Jennings Abby R,
Morey Aimee M,
Guenthner Andrew J,
Iacono Scott T
Publication year - 2017
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.5276
Subject(s) - hydrosilylation , siloxane , cyanate ester , elastomer , materials science , thermogravimetric analysis , thermal stability , differential scanning calorimetry , polymer chemistry , cyanate , thermoplastic elastomer , polymer , curing (chemistry) , catalysis , chemical engineering , composite material , organic chemistry , copolymer , chemistry , physics , epoxy , thermodynamics , engineering
A number of siloxane‐based cyanate ester (SiCE) elastomers were prepared from commercially available starting reagents employing a hydrosilylation reaction. Each elastomer was designed to utilize 2,4,6‐tris(allyloxy)‐1,3,5‐triazine as a crosslinker and multifunctional vinyl component in the hydrosilylation reaction, ensuring that the triazine rings were completely formed, and thus the elastomers resemble fully cured cyanate ester networks. The hydride‐terminated siloxane components used were varied from small‐molecule siloxanes to pre‐polymers of different molecular weights. Attenuated total reflectance Fourier transform infrared analysis confirmed the successful hydrosilylation reaction and complete curing of the SiCE elastomers via functional group analysis. Thermal characterization by thermogravimetric analysis and differential scanning calorimetry demonstrated that thermal properties of the elastomers could be tailored depending on the type of siloxane component that was utilized. The gel content of the elastomers was also determined. Investigations into the effects of a platinum catalyst on the elastomers determined that the presence of the catalyst affected the thermochemical stability of the SiCE elastomers. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here