z-logo
Premium
Silica‐supported ( n BuCp ) 2 ZrCl 2 : effect of catalyst active center distribution on ethylene–1‐hexene copolymerization
Author(s) -
Atiqullah Muhammad,
Anantawaraskul Siripon,
Emwas AbdulHamid M,
AlHarthi Mamdouh A,
Hussain Ikram,
UlHamid Anwar,
Hossaen Anwar
Publication year - 2014
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.4587
Subject(s) - copolymer , active center , catalysis , metallocene , hexene , polymer chemistry , methylaluminoxane , materials science , polymerization , ethylene , polymer , polyolefin , molar mass distribution , chain transfer , chemistry , organic chemistry , radical polymerization , nanotechnology , composite material , layer (electronics)
Metallocenes are a modern innovation in polyolefin catalysis research. Therefore, two supported metallocene catalysts—silica/ MAO /( n BuCp ) 2 ZrCl 2 (Catalyst 1) and silica/ n BuSnCl 3 / MAO /( n BuCp ) 2 ZrCl 2 (Catalyst 2), where MAO is methylaluminoxane—were synthesized, and subsequently used to prepare, without separate feeding of MAO , ethylene–1‐hexene Copolymer 1 and Copolymer 2, respectively. Fouling‐free copolymerization, catalyst kinetic stability and production of free‐flowing polymer particles (replicating the catalyst particle size distribution) confirmed the occurrence of heterogeneous catalysis. The catalyst active center distribution was modeled by deconvoluting the measured molecular weight distribution and copolymer composition distribution. Five different active center types were predicted for each catalyst, which was corroborated by successive self‐nucleation and annealing experiments, as well as by an extended X‐ray absorption fine structure spectroscopy report published in the literature. Hence, metallocenes impregnated particularly on an MAO ‐pretreated support may be rightly envisioned to comprise an ensemble of isolated single sites that have varying coordination environments. This study shows how the active center distribution and the design of supported MAO anions affect copolymerization activity, polymerization mechanism and the resulting polymer microstructures. Catalyst 2 showed less copolymerization activity than Catalyst 1. Strong chain transfer and positive co‐monomer effect—both by 1‐hexene—were common. Each copolymer demonstrated vinyl, vinylidene and trans ‐vinylene end groups, and compositional heterogeneity. All these findings were explained, as appropriate, considering the modeled active center distribution, MAO cage structure repeat units, proposed catalyst surface chemistry, segregation effects and the literature that concerns and supports this study. While doing so, new insights were obtained. Additionally, future research, along the direction of the present work, is recommended. © 2013 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here