z-logo
Premium
Facile synthesis of processable aromatic polyamides containing thioether units
Author(s) -
Huang Guangshun,
Zhang Suixin,
Li Dongsheng,
Zhang Meilin,
Zhang Gang,
Yang Jie
Publication year - 2013
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.4324
Subject(s) - thioether , polyamide , materials science , polymer chemistry , condensation polymer , glass transition , fourier transform infrared spectroscopy , dimethylformamide , polymer , chemical engineering , organic chemistry , solvent , chemistry , composite material , engineering
Aromatic polyamides containing thioether units were synthesized by interfacial polycondensation of 4,4′‐thiodibenzoyl chloride (or 4,4′‐bis(4‐chloroformylphenylthio)benzene) with aromatic diamines containing a nitrile unit. Their structure was established using 1 H NMR and Fourier transform infrared spectroscopy. The inherent viscosities of the polyamides prepared with optimum synthesis conditions were in the range 0.71–0.84 dL g −1 . These polyamides showed excellent thermal properties with glass transition temperatures of 210.5–219.6 °C, melting temperatures of 313.8–315.0 °C and initial degradation temperatures of 440–459 °C. They could be processed by melting due to their relatively wide processing window. Their tensile strengths were 71.3–79.1 MPa, water absorption was 0.17–0.22 wt%, and melt flowability was in the range 64.5 to 315.2 Pa s and 68.5 to 422.3 Pa s at different shear rates. At the same time, they were soluble in aprotic solvents such as N ‐methyl‐2‐pyrrolidone, dimethylformamide and dimethylsulfoxide. The results suggest that these aromatic polyamides containing thioether units represent a promising type of heat‐resistant and processable engineering plastic. © 2012 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom