Premium
Effect of octene content on peroxide crosslinking of ethylene–octene copolymers
Author(s) -
Svoboda Petr,
Poongavalappil Sameepa,
Theravalappil Rajesh,
Svobodova Dagmar,
Mokrejs Pavel
Publication year - 2013
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.4277
Subject(s) - octene , melt flow index , 1 octene , materials science , ethylene , copolymer , peroxide , polymer chemistry , composite material , chemistry , catalysis , polymer , organic chemistry
Various ethylene–octene copolymers were crosslinked by dicumyl peroxide. Octene content was 16, 20, 30, 35 and 38 wt% and melt flow index was 1 or 3 g/10 min. The concentration of dicumyl peroxide was 0.3, 0.5 and 0.7 wt%. Crosslinking was analyzed by a rubber process analyzer in the temperature range 150–200 °C. Cross‐linkability was evaluated from the real part modulus s ' max versus peroxide level plots as the slope of the line. With decreasing octene content and increasing melt flow index the crosslinkability increased. This was confirmed also by tan δ analysis. The network density was measured by the gel content. A higher gel content was found for melt flow index 3 and low octene content. The melting points T m and the crystallinities were evaluated by DSC. © 2012 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom