z-logo
Premium
Mechanical properties and surface morphology of photodegraded polyoxymethylene modified by a core–shell acrylate elastomer with UV stabilization
Author(s) -
Zhou Daojun,
You Bin,
Wu Guibo,
Ren Xiancheng
Publication year - 2012
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.4167
Subject(s) - materials science , elastomer , polyoxymethylene , acrylate , composite material , fourier transform infrared spectroscopy , copolymer , differential scanning calorimetry , methacrylate , izod impact strength test , polymer chemistry , chemical engineering , polymer , ultimate tensile strength , physics , engineering , thermodynamics
In order to improve the photostability of polyoxymethylene (POM), a core‐shell acrylate elastomer with UV stabilization, i.e. poly[(methyl methacrylate)‐(butyl acrylate)‐2‐hydroxy‐4‐(3‐methacryloxy‐2‐hydroxypropoxy)benzophenone] (core‐shell poly(MMA‐BA‐BPMA)), was added into the POM matrix using a melt‐mixing method. The effect of the modification with core‐shell poly(MMA‐BA‐BPMA) on POM was compared with that of poly(MMA‐ co ‐BA‐ co ‐BPMA) copolymer. Scanning electron microscopy, metallographic microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, X‐ray diffraction and X‐ray photoelectron spectroscopy were employed to characterize POM blends before and after UV irradiation, and the mechanical properties of the POM blends were investigated. The results showed that core‐shell poly(MMA‐BA‐BPMA) improved well the compatibility with and toughness of the POM matrix, and its light‐stable functional groups could increase the UV resistance of POM blends. During UV aging, the impact strength and elongation at break of POM/core‐shell poly(MMA‐BA‐BPMA) blends were retained, the growth rate of surface cracks of POM was inhibited effectively by core‐shell poly(MMA‐BA‐BPMA) and the degree of photo‐oxidation of POM blend surfaces was improved to a certain extent. Compared with poly(MMA‐ co ‐BA‐ co ‐BPMA), core‐shell poly(MMA‐BA‐BPMA) had a better UV stabilization effect on the POM matrix. Our results indicate that the core‐shell acrylate elastomer with toughening and UV stabilization functions can significantly improve the long‐term UV stability of POM. Copyright © 2012 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here