Premium
Effect of hyperbranched acrylates on UV‐curable soy‐based biorenewable coatings
Author(s) -
Wu Jennifer F,
Fernando Shashi,
Jagodzinski Katie,
Weerasinghe Dimuthu,
Chen Zhigang
Publication year - 2011
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2980
Subject(s) - coating , photoinitiator , materials science , acrylate , chemical resistance , dynamic mechanical analysis , thermal stability , ultimate tensile strength , photopolymer , diluent , epoxidized soybean oil , fourier transform infrared spectroscopy , petrochemical , chemical engineering , polymer , composite material , raw material , polymerization , chemistry , organic chemistry , monomer , engineering
Utilization of biorenewable components in UV‐curable coating formulations is both economically and environmentally beneficial, particularly when compared to their petrochemical‐based counterparts. To produce UV‐curable coatings of high biorenewable content with enhanced performance, acrylated epoxidized soybean oil (ASBO) was combined with biorenewable reactive diluent tetrahydrofufuryl acrylate, adhesion promoters, photoinitiator and hyperbranched acrylates (HBAs) as synthetic tougheners. The HBAs were found to impart high functionality and low viscosity, thus increasing crosslinking in the coating network and improving mechanical and thermal properties such as film hardness, adhesion, solvent resistance, impact resistance, tensile modulus and toughness, glass transition temperature and thermal stability. Real‐time Fourier transform infrared spectroscopy showed decreased acrylate conversion when compared with a reference formulation without HBAs, which was attributed to earlier coating network vitrification during UV irradiation. ASBO‐based coatings were also thermally annealed to allow further reaction of unreacted components in the vitrified network. As a result, coating properties were further improved. Overall, the addition of HBAs as synthetic tougheners to UV‐curable ASBO‐based biorenewable coating systems was shown to greatly improve the corresponding coating properties. Copyright © 2010 Society of Chemical Industry