Premium
Porous composites of hydroxyapatite‐filled poly[ethylene‐ co ‐(vinyl acetate)] for tissue engineering
Author(s) -
Sunny MC,
Vincy PV,
Anil Kumar PR,
Ramesh P
Publication year - 2011
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2973
Subject(s) - materials science , composite material , ethylene vinyl acetate , composite number , porosity , compressive strength , vinyl acetate , microporous material , thermogravimetric analysis , scanning electron microscope , chemical engineering , polymer , engineering , copolymer
A novel porous composite of hydroxyapatite/poly[ethylene‐co‐vinyl acetate)] (HAP/EVA) having better osteointegration was fabricated by gas foaming technique using a non toxic gas blowing agent intended for bone replacement applications. Combined techniques of scanning electronic microscopy (SEM) and X‐ray microcomputed tomography (µCT) analysis showed that the pore size and pore volume of the porous composite decrease with the increase of HAP content. The gravimetric analysis evidenced for good pore interconnectivity within the porous composites. Energy dispersive X‐ray analysis (EDX) studies inveterated the even scattering of Ca ions which in turn indicate the uniform dispersion of HAP particles in the composites. The significant gradation in Ca ion concentration seen in EDX studies is well accordance with the amount of HAP loading in the sample. Mechanical properties of the porous composite having different HAP content were measured to have the compressive strength varying from 1.06 to 2.2 MPa. Non‐cytotoxic character of the material was observed by the cytocompatibility studies. The metabolic activity of L929 cells seeded on the material assessed by [3‐(4,5‐dimethylthiazol)‐2‐yl]‐2,5‐diphenyltertrazolium bromide (MTT) assay was found to be 91.8%. The adhesion and migration of the cells inside the pore walls were visualized by confocal microscopy. Copyright © 2010 Society of Chemical Industry