Premium
Synthesis by in situ chemical oxidative polymerization and characterization of polyaniline/iron oxide nanoparticle composite
Author(s) -
Khan Aslam,
Aldwayyan Abdullah S,
Alhoshan Mansour,
Alsalhi Mohamad
Publication year - 2010
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2908
Subject(s) - polyaniline , materials science , thermogravimetric analysis , iron oxide nanoparticles , nanoparticle , oxide , iron oxide , composite number , polymerization , conductive polymer , thermal stability , chemical engineering , nanocomposite , in situ polymerization , polymer , nanotechnology , composite material , engineering , metallurgy
Polyaniline (PANI) is a well‐studied material and is the pre‐eminent electrically conducting organic polymer with the potential for a variety of applications such as in batteries, microelectronics displays, antistatic coatings, electromagnetic shielding materials, sensors and actuators. Its good environmental as well as thermal stability and electrical conductivity tunable by appropriate doping make PANI an ideal active material for several applications. In this paper, we report the synthesis of water‐dispersible colloidal PANI/iron oxide composite nanoparticles using an in situ chemical oxidation polymerization method in a micellar medium of sodium dodecylsulfate, where the cores (iron oxide) are embedded in a PANI matrix layer. Transmission electron micrographs showed evidence of the formation of an iron oxide core/PANI shell composite with a thin layer of PANI over the iron oxide cores. The results of thermogravimetric, Fourier transform infrared and UV‐visible analysis indicated that the iron oxide nanoparticles could improve the composite thermal stability possibly due to the interaction between iron oxide particles and PANI backbone. We believe that the synthetic route described can also be adapted for the assembly of hierarchical structures of other metal oxides or hydroxides onto various cores. Copyright © 2010 Society of Chemical Industry