Premium
Synergistic reinforcement of nanoclay and carbon black in natural rubber
Author(s) -
Qu Liangliang,
Huang Guangsu,
Zhang Peng,
Nie Yijing,
Weng Gengsheng,
Wu Jinrong
Publication year - 2010
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2881
Subject(s) - natural rubber , carbon black , nanocomposite , reinforcement , crystallization , materials science , ultimate tensile strength , composite material , transmission electron microscopy , chemical engineering , polymer chemistry , nanotechnology , engineering
The synergistic reinforcement of nanoclay (NC) and carbon black (CB) in natural rubber (NR) has not been much studied. Therefore, the reinforcement mechanism was probed using synchrotron wide‐angle X‐ray diffraction and transmission electron microscopy (TEM) observation and analyzed in terms of tube model theory. A synergistic effect in reinforcement between NC and CB was proved by the marked enhancement in tensile strength from 11.4 MPa for neat NR to 28.2 MPa for NR nanocomposite with 5 wt% NC and 20 wt% CB. From a study of crystallization under deformation it was found that crystallization plays a less important role in the reinforcement of NR/NC/CB. Analysis using tube model theory provided more evidence for the synergistic effect. NR containing a combination of NC and CB exhibited an increase of topological tube‐like constraints in comparison with NR/CB. That is to say, in NR/NC/CB nanocomposites, a CB–NC local filler network, as indicated by TEM images, induced a more entangled structure in which mobility of rubber chains was hindered for lateral fluctuations by the presence of neighboring chains. The synergistic reinforcement of NC and CB in NR/NC/CB nanocomposites can be reasonably understood as due to the formation CB–NC local filler networks. Copyright © 2010 Society of Chemical Industry