Premium
Biomaterials‐based organic electronic devices
Author(s) -
Bettinger Christopher J,
Bao Zhenan
Publication year - 2010
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2827
Subject(s) - nanotechnology , electronics , organic electronics , organic semiconductor , organic solar cell , materials science , electrical engineering , engineering , polymer , optoelectronics , transistor , voltage , composite material
Organic electronic devices have demonstrated tremendous versatility in a wide range of applications including consumer electronics, photovoltaics and biotechnology. The traditional interface of organic electronics with biology, biotechnology and medicine occurs in the general field of sensing biological phenomena. For example, the fabrication of hybrid electronic structures using both organic semiconductors and bioactive molecules has led to enhancements in the sensitivity and specificity within biosensing platforms, which in turn has a potentially wide range of clinical applications. However, the interface of biomolecules and organic semiconductors has also recently explored the potential use of natural and synthetic biomaterials as structural components of electronic devices. The fabrication of electronically active systems using biomaterials‐based components has the potential to produce a large set of unique devices including environmentally biodegradable systems and bioresorbable temporary medical devices. This article reviews recent advances in the implementation of biomaterials as structural components in organic electronic devices with a focus on potential applications in biotechnology and medicine. Copyright © 2010 Society of Chemical Industry