Premium
Co‐electrospun composite nanofibers of blends of poly[(amino acid ester)phosphazene] and gelatin
Author(s) -
Lin YiJun,
Cai Qing,
Li Lei,
Li QiFang,
Yang XiaoPing,
Jin RiGuang
Publication year - 2010
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2735
Subject(s) - gelatin , nanofiber , electrospinning , materials science , chemical engineering , composite number , polymer chemistry , aqueous solution , polymer , composite material , chemistry , organic chemistry , engineering
Electrospinning is known as a simple and effective fabrication method to produce polymeric nanofibers suitable for biomedical applications. Many synthesized and natural polymers have been electrospun and reported in the literature; however, there is little information on the electrospinning of poly[(amino acid ester)phosphazene] and its blends with gelatin. Composite nanofibers were made by co‐dissolving poly[(alaninoethyl ester) 0.67 (glycinoethyl ester) 0.33 phosphazene] (PAGP) and gelatin in trifluoroethanol and co‐electrospinning. The co‐electrospun composite nanofibers from different mixing ratios (0, 10, 30, 50, 70 and 90 wt%) of gelatin to PAGP consisted of nanoscale fibers with a mean diameter ranging from approximately 300 nm to 1 µm. An increase in gelatin in the solution resulted in an increase of average fiber diameter. Transmission electron microscopy and energy dispersive X‐ray spectrometry measurements showed that gelatin core/PAGP shell nanofibers were formed when the content of gelatin in the hybrid was below 50 wt%, but homogeneous PAGP/gelatin composite nanofibers were obtained as the mixing ratios of gelatin to PAGP were increased up to 70 and 90 wt%. The study suggests that the interaction between gelatin and PAGP could help to stabilize PAGP/gelatin composite fibrous membranes in aqueous medium and improve the hydrophilicity of pure PAGP nanofibers. Copyright © 2009 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom