z-logo
Premium
Phosphated crosslinked pectin as a potential excipient for specific drug delivery: preparation and physicochemical characterization
Author(s) -
SoutoMaior João Fhilype Andrade,
Reis Adriano Valim,
Pedreiro Liliane Neves,
Cavalcanti Osvaldo Albuquerque
Publication year - 2010
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2700
Subject(s) - pectin , materials science , aqueous solution , thermogravimetric analysis , chemical engineering , drug delivery , swelling , excipient , drug carrier , solubility , dosage form , chemistry , organic chemistry , chromatography , nanotechnology , biochemistry , composite material , engineering
Pectin was chemically modified with different amounts of trisodium trimetaphosphate (STMP) in aqueous solution (pH = 12), thereby giving a material with reduced water solubility. The physiochemical characterization of this new material was carried out through Fourier transform infrared and thermogravimetric analyses. Phosphated pectin (Pect‐STMP) together with prebiotic (oligosaccharide) were incorporated into an aqueous dispersion of polymethacrylate (Eudragit ® RS 30 D) in order to obtain free films using a casting process (50 °C) on a Teflon plate. The free films were evaluated using water vapour transmission, average swelling index in simulated gastric fluid (SGF) and simulated intestinal fluid, scanning electron microscopy and a diffusion study with theophylline in buffer solution with and without pectinolytic enzyme. The results suggest that the new material can be used in the coating process for oral solid‐reservoir systems, to prevent the premature release of drugs in SGF (pH = 1.2). Furthermore, the presence of both Pect‐STMP and oligosaccharide favours the specific degradation of the pellicle by the action of the enzymes produced by colonic microflora. The material obtained in this work has the potential to be applied in devices for drug delivery in the colon, making possible modified release of drugs. Nevertheless, subsequent colon‐specific experiments in vivo need to be carried out in order to confirm the possible application of this new material. Copyright © 2009 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here