Premium
Synthesis and characterization of novel aromatic polyamides derived from 2,2′‐bis( p ‐phenoxyphenyl)‐4, 4′‐diaminodiphenyl ether
Author(s) -
Behniafar Hossein,
Khosraviborna Saeed
Publication year - 2009
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2663
Subject(s) - polyamide , diamine , ether , solubility , polymer chemistry , monomer , glass transition , materials science , polymer , thermal stability , amide , aramid , chemical resistance , organic chemistry , chemical engineering , chemistry , composite material , fiber , engineering
BACKGROUND: Wholly aromatic polyamides (aramids) are high‐performance polymeric materials with outstanding heat resistance and excellent chemical stabilities due to chain stiffness and intermolecular hydrogen bonding of amide groups. Synthesis of structurally well‐designed monomers is an effective strategy to prepare modified forms of these aramids to overcome lack of organo‐solubility and processability limitations. RESULTS: A novel class of wholly aromatic polyamides was prepared from a new diamine, namely 2,2′‐bis( p ‐phenoxyphenyl)‐4,4′‐diaminodiphenyl ether (PPAPE), and two simple aromatic dicarboxylic acids. Two reference polyamides were also prepared by reacting 4,4′‐diaminodiphenyl ether with the same comonomers under similar conditions. M̄ w and M̄ n of the resultant polymers were 8.0 × 10 4 and 5.5 × 10 4 g mol −1 , respectively. Polymers resulting from PPAPE exhibited a nearly amorphous nature. These polyamides exhibited excellent organo‐solubility in a variety of polar solvents and possessed glass transition temperatures up to 200 °C. The 10% weight loss temperatures of these polymers were found to be up to 500 °C under a nitrogen atmosphere. The polymers obtained from PPAPE could be cast into transparent and flexible films from N , N ‐dimethylacetamide solution. CONCLUSION: The results obtained show that the new PPAPE diamine can be considered as a good monomer to enhance the processability of its resultant aromatic polyamides while maintaining their high thermal stability. The observed characteristics of the polyamides obtained make them promising high‐performance polymeric materials. Copyright © 2009 Society of Chemical Industry