z-logo
Premium
Synthesis of poly(ether amide)s from p ‐xylylene glycol and bis(ether nitrile)s
Author(s) -
Lakouraj Moslem Mansour,
Mokhtary Masoud
Publication year - 2009
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2645
Subject(s) - ether , amide , polymer chemistry , nitrile , polyamide , chemistry , glass transition , polymerization , organic chemistry , polymer , materials science
BACKGROUND: Poly(ether amide)s have been well studied in terms of improving the physical and thermal properties of aromatic polyamides. Poly(ether amide)s of high enough molecular weight to be useful for industrial purposes are generally difficult to prepare. The objective of this project was to introduce a simple and commercially feasible process to prepare poly(ether amide)s by a polymerization reaction at relatively low temperature. RESULTS: A series of poly(ether amide)s were prepared by direct polyamidation of p ‐xylylene glycol with bis(ether nitrile)s via the Ritter reaction using concentrated H 2 SO 4 in acetic acid. The synthesized poly(ether amide)s showed good solubility in polar aprotic solvents. The resultant poly(ether amide)s had inherent viscosities in the range 0.36–1.03 dL g −1 . The glass transition temperatures of the poly(ether amide)s were determined using differential scanning calorimetry to be in the range 190–258 °C. Thermogravimetric analysis data for these polymers indicated the 10% weight loss temperatures to be in the range 290–390 °C in nitrogen atmosphere. CONCLUSION: The Ritter reaction was applied for the synthesis of a variety of poly(ether amide)s with moderate to high molecular weights. This procedure provides a simple polymerization process for the convenient preparation of poly(ether amide)s in high yield at room temperature. Copyright © 2009 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here