Premium
Unsaturated polyester resin via chemical recycling of off‐grade poly(ethylene terephthalate)
Author(s) -
Zahedi Ali Reza,
Rafizadeh Mehdi,
Ghafarian Seyed Reza
Publication year - 2009
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2637
Subject(s) - depolymerization , ethylene glycol , maleic anhydride , polyester , materials science , catalysis , petrochemical , differential scanning calorimetry , fourier transform infrared spectroscopy , ethylene , organic chemistry , polymerization , polymer chemistry , nuclear chemistry , chemical engineering , chemistry , polymer , copolymer , physics , engineering , thermodynamics
BACKGROUND: The chemical recycling of poly(ethylene terephthalate) (PET), e.g. bottles and fibre wastes, has been studied for many years. Among several methods proposed for chemical recycling of waste PET, glycolysis makes it possible to employ very low amounts of reactants and lower temperatures and pressures compared with critical methanol and thermal degradation. Furthermore, unlike hydrolysis under acidic or basic conditions, glycolysis does not cause any problems related to corrosion and pollution. RESULTS: PET from off‐grades of industrial manufacture was depolymerized using excess glycol. The effects of the reaction time, volume of glycol and catalyst concentrations on the yield of the glycolysis products were investigated. A reaction time of 3 h, weight ratio (catalyst to PET) of 0.25 wt% and PET to ethylene glycol molar ratio of 1:5 were determined as suitable conditions for depolymerization. Then, the reaction of polyesterification of maleic anhydride (MA) and glycolysed products of PET was successfully performed at 160 and 190 °C for 8 h. CONCLUSION: Differential scanning calorimetry and vapour pressure osmometry results for the product of the glycolysis reactions, under suitable condition, confirmed the structure of the desired product. This sample underwent reaction with MA to produce unsaturated polyester resin (UPR). The results of Fourier transform infrared and NMR spectroscopy confirmed that the UPR had been synthesized successfully. This is the first direct report on the glycolysis reaction of off‐grade products of petrochemical companies in order to regenerate raw materials or other secondary value‐added products. Copyright © 2009 Society of Chemical Industry