z-logo
Premium
Synthesis of pH‐responsive crosslinked poly[styrene‐ co ‐(maleic sodium anhydride)] and cellulose composite hydrogel nanofibers by electrospinning
Author(s) -
Cao Shengguang,
Hu Binghuan,
Liu Haiqing
Publication year - 2009
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2565
Subject(s) - nanofiber , materials science , electrospinning , maleic anhydride , cellulose , swelling , hydrolysis , aqueous solution , polymer chemistry , cellulose acetate , chemical engineering , maleic acid , styrene , copolymer , composite material , chemistry , organic chemistry , polymer , engineering
BACKGROUND: Stimuli‐sensitive materials show enormous potential in the development of drug delivery systems. But the low response rate of most stimuli‐sensitive materials limits their wider application. We propose that electrospinning, a technique for the preparation of ultrafine fibrous materials with ultrafine diameters, may be used to prepare materials with a fast response to stimuli. RESULTS: Poly[styrene‐ co ‐(maleic sodium anhydride)] and cellulose (SMA‐Na/cellulose) hydrogel nanofibers were prepared through hydrolysis of precursor electrospun poly[styrene‐ co ‐(maleic anhydride)]/cellulose acetate (SMA/CA) nanofibers. In the presence of diethylene glycol, the SMA/CA composite nanofibers were crosslinked by esterification at 145 °C, and then hydrolyzed to yield crosslinked SMA‐Na/cellulose hydrogel nanofibers. These nanofibers showed better mechanical strengths and were pH responsive. Their water swelling ratio showed a characteristic two‐step increase at pH = 5.0 and 8.2, with the water swelling ratio reaching a maximum of 27.6 g g −1 at pH = 9.1. CONCLUSION: The crosslinked SMA‐Na hydrogel nanofibers supported on cellulose showed improved dimensional stability upon immersion in aqueous solutions. They were pH responsive. This new type of hydrogel nanofiber is a potential material for biomedical applications. Copyright © 2009 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom