Premium
Synthesis of pH‐responsive crosslinked poly[styrene‐ co ‐(maleic sodium anhydride)] and cellulose composite hydrogel nanofibers by electrospinning
Author(s) -
Cao Shengguang,
Hu Binghuan,
Liu Haiqing
Publication year - 2009
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2565
Subject(s) - nanofiber , materials science , electrospinning , maleic anhydride , cellulose , swelling , hydrolysis , aqueous solution , polymer chemistry , cellulose acetate , chemical engineering , maleic acid , styrene , copolymer , composite material , chemistry , organic chemistry , polymer , engineering
BACKGROUND: Stimuli‐sensitive materials show enormous potential in the development of drug delivery systems. But the low response rate of most stimuli‐sensitive materials limits their wider application. We propose that electrospinning, a technique for the preparation of ultrafine fibrous materials with ultrafine diameters, may be used to prepare materials with a fast response to stimuli. RESULTS: Poly[styrene‐ co ‐(maleic sodium anhydride)] and cellulose (SMA‐Na/cellulose) hydrogel nanofibers were prepared through hydrolysis of precursor electrospun poly[styrene‐ co ‐(maleic anhydride)]/cellulose acetate (SMA/CA) nanofibers. In the presence of diethylene glycol, the SMA/CA composite nanofibers were crosslinked by esterification at 145 °C, and then hydrolyzed to yield crosslinked SMA‐Na/cellulose hydrogel nanofibers. These nanofibers showed better mechanical strengths and were pH responsive. Their water swelling ratio showed a characteristic two‐step increase at pH = 5.0 and 8.2, with the water swelling ratio reaching a maximum of 27.6 g g −1 at pH = 9.1. CONCLUSION: The crosslinked SMA‐Na hydrogel nanofibers supported on cellulose showed improved dimensional stability upon immersion in aqueous solutions. They were pH responsive. This new type of hydrogel nanofiber is a potential material for biomedical applications. Copyright © 2009 Society of Chemical Industry