Premium
Successive solution fractionation mechanisms for high‐density polyethylene
Author(s) -
Stéphenne Vincent,
Bailly Christian,
Berghmans Hugo,
Daoust Daniel,
Godard Pierre
Publication year - 2008
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2473
Subject(s) - dispersity , molar mass , fractionation , high density polyethylene , molar mass distribution , elution , chromatography , polymer , polyethylene , materials science , chemistry , extraction (chemistry) , fraction (chemistry) , polymer chemistry , composite material
BACKGROUND: Preparative fractionation techniques are currently used in order to obtain large amounts of polyethylene fractions. Preparative successive solution fractionation (SSF) and temperature rising elution fractionation (TREF) are compared as regards obtaining, at a multi‐gram scale, low‐dispersity fractions of high‐density polyethylene (HDPE). The operative separation mechanisms during a SSF of a broad HDPE, which are not yet totally elucidated, are also studied in this work. RESULTS: SSF and TREF approaches lead to the separation of HDPE macromolecules according to their molar masses. If very homogeneous fractions (dispersities from 1.1 to 1.3) are isolated in TREF at the lowest elution temperature, the collected mass is too low. At higher elution temperatures, the fractions have too broad a molar mass distribution (dispersities from 2.7 to 3.7). With the SSF procedure, dispersities are not as low as for the first TREF fractions. But, the relative weight fraction is better distributed between the different extraction temperatures. The molar mass distribution exhibits a dispersity of around 1.9. CONCLUSION: The SSF method is the most suitable way to obtain large gram amounts of low‐dispersity ( ca 2) HDPE fractions over a wide molar mass range. Complementary gram‐scale rheological characterization is thus possible enabling a better comprehension of the SSF mechanism. Liquid–liquid demixing is the main mechanism in SSF, but its relative importance depends on polymer characteristics and solvent quality. Copyright © 2008 Society of Chemical Industry