Premium
Fabrication of protein‐doped PLA composite nanofibrous scaffolds for tissue engineering
Author(s) -
Yuan Jiang,
Shen Jian,
Kang InnKyu
Publication year - 2008
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2463
Subject(s) - gelatin , electrospinning , fourier transform infrared spectroscopy , tissue engineering , materials science , nanofiber , chemical engineering , fibroin , keratin , attenuated total reflection , scanning electron microscope , polymer chemistry , silk , composite material , chemistry , polymer , biomedical engineering , organic chemistry , medicine , pathology , engineering
BACKGROUND: Electrospinning is known as a novel fabrication method to form nanofibrous scaffolds for tissue‐engineering application. Previously, many natural biopolymers of protein have been electrospun. However, keratin has not attracted enough attention. In this study, keratin and gelatin were co‐electrospun with polylactide (PLA), respectively. RESULTS: The resulting nanofibers were characterized by a field emission scanning electron microscope (FE‐SEM), an attenuated total reflection‐Fourier transform infrared spectroscopy (ATR‐FTIR), and an electron spectroscopy for chemical analysis (ESCA). The biodegradation of mats in the presence of trypsin solution was studied. Cell attachment experiments showed that NIH 3T3 cells adhered more and spread better onto the PLA/keratin and PLA/gelatin nanofibrous mats than that onto the blank PLA mats. MTT and BrdU assay showed that PLA/keratin and PLA/gelatin nanofibrous mats could both accelerate the viability and proliferation of fibroblast cells as compared to PLA nanofibrous mats. CONCLUSION: The present study suggests that the introduction of gelatin and keratin can both improve cell‐material interaction, especially, the former is more effective. Copyright © 2008 Society of Chemical Industry