Premium
Influence of DMF on the polymerization of tert ‐butyl acrylate initiated by 4‐oxo‐TEMPO‐capped polystyrene macroinitiator
Author(s) -
Kuo KuoHuai,
Chiu WenYen,
Cheng KuoChung
Publication year - 2008
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2400
Subject(s) - polymer chemistry , copolymer , polymerization , polystyrene , dispersity , acrylate , materials science , styrene , living polymerization , chemistry , radical polymerization , polymer , composite material
BACKGROUND: In a number of studies it has been shown that 2,2,6,6‐tetramethylpiperidinooxy (TEMPO)‐mediated polymerization of acrylates is not facile. Therefore, the object of the study reported here was to prepare poly[styrene‐ block ‐( tert ‐butyl acrylate)] (PS‐b‐PtBA) block copolymers using 4‐oxo‐TEMPO‐capped polystyrene macroinitiator as an initiator, in the presence of small amounts of N , N ‐dimethylformamide (DMF). The kinetic analysis and the effect of DMF on the reaction mechanism are also discussed. RESULTS: PS‐b‐PtBA block copolymer was prepared through polymerization of tert ‐butyl acrylate (tBA) initiated by 4‐oxo‐TEMPO‐capped polystyrene macroinitiator at 135 °C. The polymerization rate of tBA could be increased by adding a small amount of DMF, and the number average molecular weight of the PtBA block in PS‐b‐PtBA reached 10 000 g mol −1 with narrow polydispersity. The activation rate constant k act−tBA of alkoxyamine increased and the recombination rate constant k rec−tBA decreased with increasing DMF concentration. CONCLUSION: DMF was shown to be a rate‐enhancing additive for the polymerization of tBA using a 4‐oxo‐TEMPO‐capped polystyrene macroinitiator. From the kinetic analysis, it was concluded that the improvement of polymerization with the addition of DMF was due to an increase in k act−tBA and a decrease in k rec−tBA . Copyright © 2008 Society of Chemical Industry
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom