Premium
Preparation and characterization of UV‐curable ZnO/polymer nanocomposite films
Author(s) -
Lü Na,
Lü Xiaodan,
Jin Xin,
Lü Changli
Publication year - 2007
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.2126
Subject(s) - materials science , nanocomposite , thermogravimetric analysis , polymer , nanoparticle , thermal stability , methacrylate , chemical engineering , polymerization , polymer chemistry , composite material , nanotechnology , engineering
A series of novel nano‐ZnO/polymer composite films with different ZnO contents was prepared through incorporation of pre‐made colloidal ZnO particles into monomer mixtures of urethane‐methacrylate oligomer and 2‐hydroxyethyl methacrylate, followed by ultraviolet (UV) radiation‐initiated polymerization. The colloidal ZnO nanoparticles with a diameter of 3–5 nm were synthesized from zinc acetate and lithium hydroxide in ethanol via a wet chemical method. In order to stabilize and immobilize the ZnO particles into the polymer matrix, the ZnO nanoparticles were further capped using 3‐(trimethoxysilyl)propyl methacrylate. Thermogravimetric analyses show that the ZnO nanoparticles were successfully incorporated into the polymer matrix and these ZnO/polymer composites have a good thermal stability. Transmission electron microscopy studies indicate the ZnO nanoparticles were uniformly dispersed in the polymer and they remained at the original size (3–5 nm) before immobilization. All nanocomposite films with ZnO particle contents from 1 to 15 wt% show good transparency in the visible region and luminescent properties. In addition, composite films with high ZnO content (>7 wt%) are able to absorb UV irradiation below 350 nm, indicating that these composite films exhibit good UV screening effects. Copyright © 2006 Society of Chemical Industry