z-logo
Premium
Modification of Nafion membrane using poly(4‐vinyl pyridine) for direct methanol fuel cell
Author(s) -
Woong Jeon Chan,
Venkataramani Sriram,
Kim Sung Chul
Publication year - 2006
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.1986
Subject(s) - nafion , membrane , electrolyte , sulfonic acid , methanol , polymer chemistry , polymer , direct methanol fuel cell , materials science , chemistry , chemical engineering , nuclear chemistry , composite material , organic chemistry , electrochemistry , electrode , engineering , biochemistry , anode
Perfluorinated membrane such as Nafion (from Du‐Pont) has been used as a polymer electrolyte membrane. Nafion 117 membrane, which was usually used as the electrolyte membrane for the polymer electrolyte membrane fuel cell (PEMFC), was modified by using poly(4‐vinyl pyridine) (P4VP) to reduce the methanol crossover, which cause fuel losses and lower power efficiency, by the formation of an ionic crosslink structure (sulfonic acid‐pyridine complex) on the Nafion 117 surface. Nafion film was immersed in P4VP/ N ‐methyl pyrrolidone (NMP) solution. P4VP weight percent of modified membrane was controlled by changing the concentration of P4VP/NMP solution and the dipping time. P4VP weight percent increased with increasing concentration of dipping solution and dipping time. The thickness of the P4VP layer increased with increasing concentration of dipping solution and dipping time when the concentration of the dipping solution was low. At high P4VP concentration, the thickness of the P4VP layer was almost constant owing to the formation of acid–base complex which interrupted the penetration of P4VP. FTIR results showed that P4VP could penetrate up to 30 µm of Nafion 117 membrane. Proton conductivity and methanol permeability of modified membrane were lower than those of Nafion 117. Both decreased with increasing concentration of dipping solution and dipping time. Methanol permeability was observed to be more dependent on the penetration depth of P4VP. Water uptake of the modified membrane, the important factor in a fuel cell, was lower than that of Nafion 117. Water uptake also decreased with increasing of P4VP weight. On the basis of this study, the thinner the P4VP layer on the Nafion 117 membrane, the higher was the proton conductivity. Methanol permeability decreased exponentially as a function of P4VP weight percent. Copyright © 2006 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here