z-logo
Premium
2‐Naphthol‐containing β‐cyclodextrin–epichlorohydrin copolymers: synthesis, characterization and fluorescence studies
Author(s) -
Zohrehvand Shiva,
Evans Christopher H
Publication year - 2005
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.1747
Subject(s) - epichlorohydrin , copolymer , fluorescence , chemistry , polymerization , polymer chemistry , polymer , cyclodextrin , fluorophore , solvent , nuclear chemistry , organic chemistry , physics , quantum mechanics
Fluorescent 2‐naphthol (NOH)‐containing β‐cyclodextrin (β‐CD)–epichlorohydrin (EP) copolymers were synthesized. Polymerization was confirmed through viscosity and FT‐IR spectroscopic measurements. Under certain conditions, the copolymers were water‐soluble (molar ratio of EP/β‐CD <22:1), while under other conditions water‐insoluble gels were formed (EP/β‐CD ≥ 22:1). Increase of the EP content to EP/β‐CD ≤ 39:1 increased the fluorescence intensity of the copolymer and shifted the emission maximum from 422 nm toward 352 nm (measured at pH ≥ 12). Further increases in the EP content resulted in a slight decrease in the fluorescence intensity. The fluorescence properties of our system at EP/β‐CD < 22 were sensitive to pH variation, while at EP/β‐CD ≥ 22 no pH effect was observed. These variations can be explained in terms of the exposure of the fluorophore to solvent in soluble versus insoluble polymers, as well as changes in the mode of association (host–guest complexation, trapping within the polymer network, covalent bonding, etc) of NOH with the polymers. Crystallographic studies on a single crystal grown in the absence of EP, but under basic conditions, suggest that host–guest complexation is not an important mode for NOH incorporation. Copyright © 2005 Society of Chemical Industry

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here