Premium
Effects of hydrothermal ageing on the thermal behaviour of poly(vinyl chloride) filled with wood flour
Author(s) -
Djidjelli Hocine,
Kaci Mustapha,
MartinezVega JuanJorge,
Benachour Djafer
Publication year - 2004
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.1572
Subject(s) - absorption of water , materials science , differential scanning calorimetry , hydrothermal circulation , plasticizer , wood flour , composite material , thermal decomposition , ageing , chemical engineering , chemistry , organic chemistry , physics , genetics , biology , engineering , thermodynamics
The hydrothermal ageing of wood‐flour‐filled PVC produced by dry‐blending in a high‐speed mixer in the presence of a plasticizer and other processing additives was carried out to investigate its thermal behaviour, and the results obtained were compared with those for the unfilled material. The dry‐blended compounds were prepared as films by a calendering process. The accelerated hydrothermal ageing was carried out by immersing the samples in boiling water at 100 °C for 110 h. The thermal behaviour of the reference and the aged samples in water was characterized by differential scanning calorimetry (DSC) and determination of the weight changes. The study has shown that during hydrothermal ageing, the samples from the whole formulations absorbed water, for instance, for 30 wt% filled PVC (F30), 16 wt% of water absorption was obtained, while this was only 2.2 wt% for unfilled PVC (F0). It was also noticed that the formulations filled with wood flour up to 10 wt% exhibited similar water absorption kinetics, i.e. the water was mostly absorbed during the first 50 h and the amount absorbed was less than 5 wt%. On the other hand, the 30 wt% filled samples regularly absorbed water up to almost 16 wt% after 100 h of immersion. The DSC data showed that hydrothermal ageing significantly affected the onset temperature of decomposition ( T d ) of the unfilled samples by decreasing this temperature from 228 to 215 °C. For the 30 wt% filled samples, only additive migration was observed, while the T d remained almost unchanged. Furthermore, from the DSC data, processability of the 30 wt% filled PVC samples at elevated temperatures, i.e. 180 to 200 °C was shown. Copyright © 2004 Society of Chemical Industry