Premium
Analysis of the tensile modulus of poly( p ‐hydroxybenzoate)/poly(ethylene terephthalate)/poly(ethylene 2,6‐naphthalate) ternary polyester composite fibers
Author(s) -
Lee Seung Goo,
Kim Seong Hun
Publication year - 2003
Publication title -
polymer international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.592
H-Index - 105
eISSN - 1097-0126
pISSN - 0959-8103
DOI - 10.1002/pi.1111
Subject(s) - materials science , composite material , ultimate tensile strength , composite number , fiber , modulus , polyester , young's modulus , synthetic fiber , compounding , polymer
Liquid crystalline polymer reinforced plastics were prepared by compounding (PHB/PEN/PET) blends. A fibrillar PHB structure was formed in situ in the PEN/PET matrix under a high elongational flow field during melt‐spinning of the composite fibers. The formation of PHB microfibrils in the composite fiber with different PHB contents and winding speeds was observed. The PHB microfibril reinforced PEN/PET composite fibers exhibited an unexpectedly low tensile modulus. We have evaluated the tensile modulus of the fibers using the non‐modified22 and a modified23 Halpin–Tsai model. From the analysis of both models, large differences were found between the theoretical and experimental values of the tensile modulus, and the low value of the tensile modulus of the composite fiber could not adequately be explained by either model. Thus, we analyzed the observed modulus values using the Takayanagi model,24 which describes the concept of mechanical discontinuities in semi‐crystalline polymers. Using the Takayanagi model, the effective fraction of continuous or discontinuous microfibrils was evaluated. Consequently, we could successfully explain the very low modulus of the PHB/PEN/PET composite fiber, having a large number of PHB microfibrils, using the Takayanagi model. Copyright © 2003 Society of Chemical Industry