Premium
Temperature dependence of polyolefin melt rheology
Author(s) -
Mavridis H.,
Shroff R. N.
Publication year - 1992
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760322307
Subject(s) - materials science , rheology , linear low density polyethylene , activation energy , viscoelasticity , dynamic modulus , polyolefin , rheometry , context (archaeology) , thermodynamics , dynamic mechanical analysis , relaxation (psychology) , low density polyethylene , high density polyethylene , polymer , arrhenius equation , composite material , polyethylene , chemistry , physics , psychology , social psychology , layer (electronics) , biology , paleontology
The rheology of polymer melts depends strongly on temperature. Quantifying this temperature dependence is very important for fundamental, as well as practical, reasons. The purpose of this paper is to present a unified framework for handling the temperature dependence of rheological data. We considered the case (by far the most common in polymer melts) where all relaxation times (in the context of linear viscoelasticity) have the same temperature dependence (characterized by a “horizontal shift activation energy”) and all relaxation moduli have the same temperature dependence (characterized by a “vertical shift activation energy”). The horizontal and vertical activation energies were extracted from loss tangent vs. frequency and loss tangent vs. complex modulus data, respectively. This is the recommended method of calculation, as it allows independent estimation of the two activation energies (statistically uncorrelated). It was shown theoretically, and demonstrated experimentally, that neglect of the vertical shift leads to a stress (or modulus) dependent activation energy and necessitates different activation energies for the superposition of loss and storage modulus data. The long standing problem of a stress‐dependent activation energy in long chain branched LDPE was identified as originating from the neglect of the vertical shift. The theory was applied successfully to many polyolefin melts, including HDPE, LLDPE, PP, EVOH, LDPE, and EVA. Linear polymers (HDPE, LLDPE, PP) and EVOH do not require a vertical shift, but long chain branched polymers do (LDPE, EVA). Steady‐shear viscosity data can be superimposed using activation energies extracted from dynamic data.