z-logo
Premium
The yield strength of particulate reinforced thermoplastic composites
Author(s) -
Jancar J.,
Dianselmo A.,
Dibenedetto A. T.
Publication year - 1992
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760321809
Subject(s) - materials science , composite material , ultimate tensile strength , brittleness , volume fraction , ductility (earth science) , adhesion , yield (engineering) , polypropylene , creep
The effects of the filler volume fraction and strength of adhesion on the mode of tensile failure of a particulate reinforced polypropylene (PP) are investigated using finite element simulation (FES). When there is perfect adhesion between constituents, an upper bound for tensile yield strength is found to be 1.33 times the matrix yield strength above a critical volume of particulate concentration. Utilizing Sjoerdsma's model for interacting stress concentration fields, one can determine the concentration dependence of the yield strength below the critical filler volume fraction. When there is no adhesion between constituents, a modified version of an equation by Nicolais and Narkis adequately describes a lower bound for the tensile yield strength. The particulate concentration and the matrix ductility are the prime factors in controlling the brittle failure of the composite. Upper and lower bounds for brittle failure strength are characterized using a strength‐of‐materials approach and stress concentration factors for both “perfect” and “zero” adhesion. The properties of calcium carbonate filled PP homopolymer were measured over a wide range of filler volume fractions. CaCO 3 was either treated with stearic acid to prevent adhesion between constituents or used as received. Maleic anhydride grafted PP (MPP) was used to promote adhesion. For filler volume fractions below 0.2, yielding of the composite by combined microcavitation and shear deformation was the principal failure mechanism. At v f above 0.35, a brittle failure mechanism dominated. In the range between 0.2 and 0.35, both failure modes were observed in the populations tested. Good agreement was found between the experimental results and the proposed model.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here