z-logo
Premium
Differential scanning calorimetry analysis of thermoset cure kinetics: Phenolic resole resin
Author(s) -
Focke W. W.,
Smit M. S.,
Tolmay A. T.,
Van Der Walt L. S.,
Van Wyk W. L.
Publication year - 1991
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760312306
Subject(s) - differential scanning calorimetry , thermosetting polymer , arrhenius equation , kinetics , materials science , analytical chemistry (journal) , thermodynamics , chemistry , composite material , physics , organic chemistry , quantum mechanics
The Differential Scanning Calorimetry (DSC) trace for a commercial phenolic resole resin shows two distinct peaks. Assuming that these represent two independent cure reactions results in a kinetic model of the form:\documentclass{article}\pagestyle{empty}\begin{document}$$ \frac{{dx}}{{dt}} = p\kappa _1 \left({1 - x_1} \right)^{n_1} + \left({1 - p} \right)\kappa _2 \left({1 - x_2} \right)^{n_2} $$\end{document} with κ i = κ io exp(‐ B i / T ). The Arrhenius parameters were estimated from a plot of ln (β/ T   p 2 ) versus 1/ T p . The parameters, p , n 1 , and n 2 were obtained by writing the DSC response predicted by the equation above in terms of a function which contains temperature as the only variable.\documentclass{article}\pagestyle{empty}\begin{document}$$ \dot q = q_{tot} \left[{p\kappa _1 \left({1 - \theta _1 /r_1} \right)^{r_1 - 1} + \left({1 - p} \right)\kappa _2 \left({1 - \theta _2 /2} \right)^{r_2 - 1}} \right] $$\end{document} with \documentclass{article}\pagestyle{empty}\begin{document}$ \theta _i = \left({1/\beta} \right)\int_{T_0}^T {\kappa _i dT \le r_i} $\end{document} dT ⩽ r i and r i = 1/(1‐ n i ). Fitting this equation to the DSC response measured at a scan rate of 4°C/min obtains p ≈ 0.66; n 1 ≈ 0.55; n 2 ≈ 2.2; B 1 ≈ 8285; B 2 ≈ 7480; κ 1 ≈ 1. 12 × 10 8 s −1 ; κ 2 ≈ 0.99 × 10 6 S −1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom