z-logo
Premium
An efficient algorithm of computation of molecular weight distributions and its moments for reversible step growth polymerization in homogeneous continuous flow stirred tank reactors
Author(s) -
Kumar Anil
Publication year - 1988
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760281905
Subject(s) - dispersity , computation , materials science , molar mass distribution , polymer , polymerization , condensation polymer , nonlinear system , continuous stirred tank reactor , batch reactor , flow (mathematics) , thermodynamics , algorithm , mechanics , mathematics , polymer chemistry , chemical engineering , chemistry , physics , organic chemistry , composite material , engineering , catalysis , quantum mechanics
The reversible step growth polymerization in homogeneous continuous flow stirred tank reactors (HCSTRs), in which the condensation product (W) leaves the reactor through flashing, has been analyzed. The molecular weight distribution (MWD) of the polymer formed is governed by nonlinear coupled algebraic relations to be solved simultaneously. To find the MWD numerically a large number of these are normally solved simultaneously using a suitable iterative procedure. In this paper, these have been decoupled using the technique proposed in our earlier works (1, 2) and the MWD can now be obtained sequentially without any trial and error. This leads to considerable saving in computation time compared to methods currently used. To demonstrate the efficacy of the algorithm, the polycondensation step of the poly(ethylene terephthal‐ate) (PET) formed in HCSTRs has been analyzed. The MWD, the average chain length and the polydispersity index of the polymer have been computed and it takes 0.1 CPU seconds on a DEC 1090 as opposed to the earlier method which would take seventy minutes for similar computations. The simple model of the HCSTR for the PET formation gives the effect of reactor temperature and pressure and the quantitative results have been presented in this paper.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here