Premium
Simulation of foaming in reaction injection molding
Author(s) -
Tighe S. C.,
Manzione L. T.
Publication year - 1988
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760281503
Subject(s) - materials science , exothermic reaction , composite material , molding (decorative) , polyurethane , blowing agent , core (optical fiber) , mold , blow molding , shrinkage , polymerization , polymer , thermodynamics , physics
Abstract Blowing agents are often used in the reaction injection molding process to compensate for the shrinkage that occurs upon polymerization, thereby creating a structural foam part. Controlling the thickness of the solid skin and foamed core is essential to achieve the intended mechanical properties of the molded part. A numerical model was developed to predict the foaming behavior in reaction injection molding. This algorithm employs a novel primitive cell construction to enable it to analyze complex rectangular geometries, including inserts, with a two‐dimensional, finite difference solution method. The analysis was applied to foaming of polyurethane in a rectangular cavity. The predicted skin thickness was found to be in good agreement with actual structural foam parts. Foaming as a function of cavity thickness was also treated. The algorithm Is useful for understanding and interpreting nonlinear phenomena of rapid, exothermic polymerizations such as foam formation adjacent to the mold wall or around a metal insert. The results can be used to formulate design guidelines for achieving desired skin/core thicknesses as a function of design, material, and process parameters.