Premium
Biaxially oriented polypropylene film in power capacitors
Author(s) -
Nash James L.
Publication year - 1988
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760281307
Subject(s) - materials science , dielectric , capacitor , composite material , polypropylene , film capacitor , capacitance , dissipation factor , dielectric loss , optoelectronics , electrical engineering , voltage , electrode , chemistry , engineering
The use of polymer dielectrics, particularly biaxially oriented polypropylene (BOPP), has revolutionized power distribution around the world. BOPP film of sub mil thickness has displaced impregnated Kraft paper because of superior dielectric performance, lower cost, and small volume. The polypropylene molecule has a unique set of properties which combine stable dielectric properties in the operating temperature and frequency range along with an adequate dielectric constant. High levels of orientation and a small unbalance of orientation are required to produce films of high dielectric strength over large areas of film. Control of thickness uniformities to approximately ± 5 percent are critical to the reliable operation of the capacitor under load and to control of capacitance in the product. A special fibrillated surface is required which promotes complete impregnation by the dielectric fluid. This surface is acquired by the development of a specific crystal morphology at one surface of the film. No additives are used to promote this crystalline structure since most additives effect dissipation factor and generate unwanted heat. Similarly, control of contamination (ppm and ppb) is a key factor in the manufacture of film power capacitors.