Premium
Studies on the melt flow behavior of thermoplastic elastomers from polypropylene—Natural rubber blends
Author(s) -
Kuriakose Baby,
De S. K.
Publication year - 1985
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760251009
Subject(s) - materials science , natural rubber , composite material , thermoplastic elastomer , polypropylene , thermoplastic , die swell , viscosity , polymer blend , melt flow index , vulcanization , elastomer , extrusion , polymer , copolymer
The melt flow behavior of thermoplastic polypropylenenatural rubber blends has been evaluated with specific reference to the effects of blend ratio, extent of dynamic crosslinking of the rubber phase and temperature, on viscosity, flow behavior index, and deformation of the extrudate. The proportion of rubber in the blend and the extent of dynamic crosslinking of the rubber phase were found to have profound influence on the viscosity of the blends at lower shear stresses. But at higher shear stresses, the effect of blend ratio on viscosity was comparatively less for the uncrosslinked blends than that for the crosslinked blends. At lower shear stress, the viscosity of the blend increased with increase in degree of crosslinking but at higher shear stress, the effect of crosslinking on viscosity was found to vary depending on the ratio of the plastic and rubber components in the blend. The deformation of the extrudates was also very much dependent on both blend ratio and degree of crosslinking.