Premium
Recent advances in interpenetrating polymer networks
Author(s) -
Sperling L. H.
Publication year - 1985
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760250902
Subject(s) - interpenetrating polymer network , polymer science , materials science , polymer , polymer chemistry , composite material
Interpenetrating polymer networks (IPN's) can be defined as a combination of two polymers in network form, at least one of which was synthesized and/or crosslinked in the immediate presence of the other. Historically, the science of IPN's began with the papers of J. R. Millar in 1960 on homo‐IPN's made from polystyrene, but the first recorded publication is a patent by J. W. Aylsworth in 1914. This latter system was based on phenol‐formaldehyde for one network, and sulfur cured natural rubber for the other network. Early academic laboratories interested in IPN's include the Frisch team at Detroit and SUNY, who soon added their former student, Danny Klempner, and Yuri Lipatov's team at the Ukranian SSR Academy of Sciences in the USSR, as well as the author's laboratory. More recent academic teams interested in IPN's include Douglas Hourston at the University of Lancaster, England; Robert Cohen at MIT; S. C. Kim at the Korea Advanced Institute of Science and Technology, Seoul, Korea; G. Meyer and J. M. Widmaier in Strasbourg, France; and many others. Numerous industrial laboratories are interested, noting that about 90 U.S. patients have been granted, most of them in the past ten years. Systems of special interest include the new thermoplastic IPN's, which are really hybrid materials between polymer blends and IPN's, and the IPN‐based RIM (reaction injection molding) materials. Other materials include the sequential IPN's and the SIN's, which have both polymers simultaneously polymerized, and the latex IPN's, which often exhibit core‐shell characteristics.