z-logo
Premium
Improving the crack resistance of bulk molding compounds and sheet molding compounds
Author(s) -
McGarry E. J.,
Rowe E. H.,
Riew C. K.
Publication year - 1978
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760180205
Subject(s) - materials science , composite material , fracture mechanics , fracture toughness , molding (decorative) , toughness , compression molding , natural rubber , sheet moulding compound , epoxy , fracture (geology) , mold
Fiber‐reinforced plastics exhibit two types of mechanical failure: gross fracture and microcracking. Gross fracture involves both matrix and fiber failures. Principal resistance to crack propagation derives from partial decoupling of fibers and then stressing, remove finite volumes of them to fracture. Classical concepts of fracture mechanics can be applied to such composites, though modifications of methodology to treat anisotropy and other special effects are required. Microcracking occurs principally in the matrix phase and usually accompanies cyclic fatigue, drop impact, bending, or rapid cooling from molding temperatures. It lowers composite stiffness, environmental resistance and may reduce strength. Matrix resins require high fracture toughness to minimize or eliminate microcracking. This paper discusses cracking in bulk molding compounds and sheet molding compounds, complex materials containing high percentages of glass fibers and calcium carbonate filler. Microcracking can be greatly reduced by tire addition of small amounts of a rubber to the polyester matrix. Various tests such as impact, bending, acoustic emission and crack propagation demonstrate the improved toughness properties which result. No sacrifice of original strength characteristics occurs, and markedly improved resistance to damage has been noted with rubber modified epoxy and polyester matrix resins.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here