z-logo
Premium
Frequency sensitivity of fatigue processes in polymeric solids
Author(s) -
Hertzberg R. W.,
Manson J. A.,
Skibo M.
Publication year - 1975
Publication title -
polymer engineering and science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.503
H-Index - 111
eISSN - 1548-2634
pISSN - 0032-3888
DOI - 10.1002/pen.760150404
Subject(s) - materials science , crazing , creep , composite material , polymer , polystyrene , glass transition , fatigue limit
One is faced with an interesting challenge when trying to explain the effect of test frequency on polymer fatigue performance. While hysteretic heating arguments appear sufficient to explain a diminution of fatigue resistance with increasing cyclic frequency in unnotched test samples, the enhancement of fatigue resistance in many polymers with increasing cyclic frequency in notched samples is still not clearly understood. In large measure, this is due to contradictory trends in fre‐quency‐sensitive material properties which affect the fatigue process. In this paper, a number of proposed fatigue models dealing with the time and strain rate dependence of elastic modulus, yield strength, creep and localized crack tip heating are examined and confronted with available data from the literature. Additional fatigue crack propagation data for poly(methyl methacrylate), poly (vinyl chloride), polystyrene, poly‐carbonate, nylon 66, poly(vinylidene fluoride) and poly(2,6‐dimethylphenylene oxide) were obtained and are reported herein. These data were obtained over a maximum frequency range of 0.1 to 100 Hz and, for selected polymers, with various waveforms. Frequency sensitivity is shown to be greatest in those polymers that show a high tendency for crazing. Relative fatigue behavior is found to reflect a competition between strain rate and creep effects. Where creep effects dominate, the total crack growth rate may be viewed as consisting of the summation of pure fatigue and creep components, respectively. Finally, the β transition appears to have a role, with frequency sensitivity being at a maximum for polymers where the β transition at room temperature occurs in the range of the experimental test frequency.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here